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Abstract

An ideal robot could autonomously complete diverse tasks such as ocean
surveying, kitchen cleaning, and aerial environmental monitoring. How-
ever, robots optimized for each task typically have different shapes, posing
a challenge in reconciling form and function. This challenge inspires the
pursuit of general shape-changing robots (GSCRs). While soft materials
and actuators are promising for GSCRs due to their ability to accommo-
date extreme deformations, there is a gap between the vision of GSCRs
and the simple examples we see today. Two critical components are needed:
robot-agnostic stretchable shape sensing and stretchable computing. To-
gether, these components would enable closed-loop shape control and
the first instantiations of GSCRs. This review aims to consolidate the
literature on these components, encouraging researchers to bridge the
gap between today’s shape-changing robots and the envisioned GSCRs,
ultimately advancing the field toward more versatile and adaptive robots.
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General
shape-changing
robot (GSCR):

a robot that can freely
change between
arbitrary and nearly
unlimited shapes as
needed and has
onboard
proprioception,
sensing, and control

Shape-changing
robot: a robot that can
change its resting
(unactuated) shape to
adapt to new
environments or gain
functionalities

1. INTRODUCTION

General shape-changing robots (GSCRs) have incredible potential to fulfill the original vision of
robotics: machines that can do anything. From aerial to quadruped to aquatic body types, GSCRs
could explore any environment and perform myriad tasks with just one set of finite hardware
(Figure 1). Initial versions of morphing platforms have been attempted in many ways, from a sin-
gle system with constant material (rigid, soft, or hybrid) that changes shape (1) to reconfigurable
robots that can add and subtract body material (2, 3), though the latter are outside the scope of
this review. Techniques from the field of soft robotics are uniquely promising for shape-changing
systems since, fundamentally, a change in shape necessitates surface strains (4) that are accommo-
dated by the base materials in soft robots (5-7), which can stretch up to 1,000% (8). However, we
have yet to see a platform capable of generalized shape change. Why is this, and how do we get
there? This review aims to answer these questions and give members of the field a concrete path
to creating GSCRs with closed-loop control over their shape.

First, what is a shape-changing robot, what is a GSCR, and what is neither? In a previous
review, Shah et al. (1) used the term shape-changing robot to refer to “robots that actively change
their shape to adapt to their environment or gain new functionalities” (p. 2). A later work (9)
augmented this definition to further specify a shape-changing robot as a robot that can change
its resting (unactuated) shape to adapt to new environments or gain functionalities. The latter
definition does not necessarily mean that all actuators employed for shape change must be at rest
in the new shape; rather, it indicates that the actuators used to hold a new shape are not also used
for gaitactuation while in that shape. For example, the three-banded armadillo is typically a legged
quadruped but can tuck its head, legs, and tail into its shell and roll to escape predation. A robot
that mimics such coupled shape and gait adaptation would meet our definition of shape changing.
It is not our intent to divide robots into exclusive categories, but rather to provide a framework to
discuss the state of shape-changing robots and highlight the technology advances that may push
the field toward our vision of GSCREs.

A GSCR represents an extreme instantiation of a shape-changing robot (Figure 1). The robots
of this vision can freely change between arbitrary and nearly unlimited shapes as needed and
have onboard proprioception, sensing, and control. Exhibiting adaptive morphogenesis (10), they

Figure 1

Tllustration of the vision of general shape-changing robots. These robots will know their own shape, have
onboard control over their shape, and be able to morph into nearly any shape on demand. Illustration
created by Fernanda Nevitiv da Costa.
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can adapt to changing environments and task demands to efficiently accomplish their objectives.
Though this vision has only been seen in science fiction, we hope to convince the reader that the
field is only a few key innovations away from its first instantiations.

With these definitions and vision, we examine examples and non-examples of current shape-
changing systems. Then, we highlight what can be learned and identify sensing- and computation-
specific gaps in the current approaches, which when filled may enable the realization of
GSCRs.

1.1. What Robots Are Not Shape-Changing Systems?

So, what robots are not shape-changing systems? Though the robot Tetraflex from Wharton et al.
(11) is an impressive platform that looks like it is constantly changing shape by altering the lengths
of its sides to offset its center of gravity, this does not meet our definition of shape changing,
as the apparent changes in shape are used primarily to execute a gait. A second example of this
consists of an inflatable sphere with sections along its surface that can jam using granular jam-
ming (12). The jammed sections on the surface, in this case, control the shape by directing how
the single actuator can expand the shape, and the robot uses this shape change to roll. Though
this is a locomoting robot that changes shape, it, like Tetraflex, uses the shape change only to
locomote.

Many gait-changing robots exist and are able to gain access to varying environments using new
gaits (5, 13, 14), but just changing gait does not meet our stricter definition of a shape-changing
robot and work toward the vision of GSCRs. Though a humanoid robot could, in theory, swim,
walk, and dig, it would accomplish these tasks inefficiently, wasting precious onboard power and
time, and still never be able to fly, squeeze through small gaps, or adapt its limbs to manifest the
tools needed to accomplish a task on the spot. GSCRs would be able to accomplish all of these
tasks efficiently by changing shape. Additionally, pose-changing robots, like most continuum arms
(15, 16), do not fall under our definition. For example, McEvoy & Correll (15) and Stella et al.
(16) were able to change the pose of a continuum manipulator, but we see this as actuation of the
robot.

An adjacent field to shape-changing robots is that of shape-morphing surfaces. In this field,
vital material and actuation developments have been made to create surfaces that change shape
(17-23), but they are generally not robots—they use their actuators only to change shape and
exhibit no other function or new ability. However, the techniques from this field are and will be
useful for the field of shape-changing robots, as their methods of high-degree-of-freedom (high-
DOF) actuation will aid designers of future shape-changing robots. For example, Zhang et al. (22)
used variable-stiffness shape-morphing hydrogels to achieve multiple shapes in 3D.

1.2. What Shape-Changing Robots Exist Today?

What are some current examples that meet our definition of a shape-changing robot? The previ-
ous work that first introduced the term resting shape (9) put forward a soft robot that exemplifies
our definition: The robot has an internal bladder that can be inflated or deflated and several sur-
face actuators to execute gait (Figure 24). Depending on the inflation of the internal bladder, the
robot is in one of two resting shapes, flat or cylindrical, and the actuators are used to inch the
robot or roll it, respectively, to operate on flat ground or an incline. Another prior work (27) used
robotic skins to mold a lump of clay, changing the resting shape of the robot to avoid obstacles
and then other actuators to execute a gait. Another early example by Lin et al. (24) demonstrated
an inchworm-inspired robot that can morph into a circular rolling robot to increase movement
speed (Figure 2b).
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Figure 2

Today’s soft and hybrid shape-changing robots. (#) A soft robot that uses an internal bladder to change its shape and locomote in
different environments. (Left) The inner bladder expanding in simulation and expanded in real hardware. (Right) The robot inching up
an incline with a deflated internal bladder. Panel adapted from Reference 9. () A soft robot that goes from an inching to rolling gait
using shape change. (7op) The robot inching. (Bottom) The robot using a ballistic rolling gait. Panel adapted with permission from
Reference 24. (c) A hybrid rigid-soft robot that switches between a low-profile crawling gait and a walking gait to traverse different
environments. This example achieves closed-loop control over its shape. Panel adapted from Reference 25 (CC BY 4.0). (d) A hybrid
rigid—soft robot that can morph its limb shape to swim in water (top left), walk on land (zop right), and transition between environments
(bottom). Panel adapted from Reference 26.

Several rigid—soft hybrid robots are able to adjust the height or curvature of parts of their bodies
to access new environments (26, 28), where their gait is separate from the shape change. Another
entirely rigid robot walks with the same gait while controlling the length of its legs (29), using
this shape change to move efficiently in different terrains. A soft tensegrity robot uses extendable
rods to access other gaits—for example, it extends a strut to change its shape, then rapidly extends
two other struts to stably roll (30). A few notable examples demonstrate shape-changing abilities to
access different modes of transport by curving the centers of their bodies. One example transitions
from a shape favoring crawling to one that supports walking (25) (Figure 2¢). Other examples
morph from a terrestrial locomotor to a flying robot (31, 32). Like the above, many of today’s
shape-changing robots have only one part of the robot change shape. For example, the wheel
of the robot can change its size (33, 34), or a flipper can morph into a leg to access aquatic and
terrestrial environments (26, 35) (Figure 2d). Though these are state-of-the-art examples, they
generally execute a low-DOF shape change.

To further analyze these examples, Table 1 compiles some key metrics on shape-changing
systems. From this table, we glean that the average numbers of degrees of freedom for shape-
changing robots classified as soft, rigid, and hybrid are 8.8, 4.5, and 1.8, respectively. Rigid robots
have fewer DOFs than soft robots (but generally the same order of magnitude). However, it is
difficult to imagine much higher-DOF shape change in rigid systems, as they would need an
increasingly complex and clunky actuation scheme due to the addition of many motors, linear
actuators, and so on. Hybrid examples present an interesting compromise between soft morphing
and the controllability of rigid robots, leading to highly functional robots but the most limited
number of attainable shapes (25, 26).
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Table 1 Today’s shape-changing robotic systems
Reference Soft, rigid, or hybrid?? DOFs for SCP Open-loop control® Closed-loop controld
Hwang et al. 31)¢ Hybrid 1 Shape and gaitf NA
Shah et al. (9) Soft 1 Shape Gait
Lee etal. 33) Hybrid 1 Shape and gait® NA
Wilcox et al. (32) Rigid 1 Shape and gait NA
Lin etal. (24) Soft Shape and gait NA
Sun et al. (25) Hybrid 340 Gait Shape
Baines et al. 26) Hybrid 4 Shape and gait NA
Nygaard et al. (29) Rigid 8 NA Shape and gait
Jeong et al. (30)! Soft 12 Shape and gait NA
Shah et al. (27) Soft 20 Shape and gait NA

Abbreviations: DOF, degree of freedom; NA, not applicable; SC, shape change.

*A system is denoted as soft if a load can be applied in any direction and the system exhibits bulk compliance, rigid if it is composed entirely of regions
that are incompressible, and hybrid if it has components traditionally used in soft robotics that exhibit the above compliance, but a portion of the robot is
incompressible.

>The number of DOFs possible in the system with the actuation scheme. For example, in Reference 25, the crawler/walker uses three actuators to change
the body shape; because the three actuators always actuate together, there is only one DOF in their demonstration, but three potential DOFs for shape
change in the system. The same applies to Reference 26: Four flippers can change their shape, though the robot only achieves two distinct shapes by using
all four simultaneously.

€A system is denoted as exhibiting open-loop control if it has no sensor giving high-level feedback or is controlled remotely by human input (e.g., a human
driving a system with wheels or rotors).

dA system is denoted as exhibiting closed-loop control if it has a sensor whose feedback enables autonomous high-level gait/trajectory or shape change
autonomously with no human in the loop.

¢Land and air transport machine.

Driven and flown using remote control.

gUser controlled.

hThree for the crawler/walker, and four for the quadruped with four legs.

iThe type 3 jumping robot in the paper.

1.3. What Is Preventing the Transition from Today’s Shape-Changing Robots
to General Shape-Changing Robots?

All of today’s examples are limited in the number and diversity of shapes they can achieve, with soft
systems achieving DOFs larger than, but often on the same order of magnitude as, their hybrid
and rigid counterparts. Soft robots’ higher DOFs indicate their promise for GSCRs, so why has
no one in soft robotics ventured to create a system with much higher DOFs, especially when such
diverse soft actuation techniques have been presented? The answer to this question could be due
to another fact that can be drawn from Table 1: No soft shape-changing robots have achieved
closed-loop control over shape.

Though some shape-changing robots have achieved closed-loop control of their gait or reliable
open-loop gaits (26), these demonstrations were achieved largely with easily sensed and controlled
rigid motors (as used in hybrid and rigid robots) (25, 29), so the state of the robot was known. No
fully soft robot had the sensing technology needed to achieve closed-loop control of its shape.
One hybrid robot used the self-sensing property of its soft actuator (25), which, when calibrated
with the control signal, could indicate the curvature of the body and, hence, the state and shape of
the robot. For the simple, low-DOF systems in Table 1, traditional sensing can and has worked to
close the loop on shape, but for GSCRs, current sensing technology fundamentally will not work.

Current soft sensing technology compatible with soft robot bodies works by measuring
deviations from a zero-strain state and applying material-dependent models to estimate the
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deformations within the confines of the model (36—41). Suppose a continuum arm has a stretch-
able strain sensor embedded in it, and the cylinder deforms to the right. In that case, the soft
cylinder can be reconstructed after having deviated from the initial, resting model of the cylinder.
However, for GSCRs (Figure 1), the resting shape/zero-strain state is constantly being deformed
and updated. Such complex actuation schemes would be incredibly difficult, if not impossible, to
model (42, 43), and even if it were possible, the robot model and performance would change when
covered in the large number of strain sensors needed to enable generalized deformation. If it could
indeed accommodate so many sensors, the compound error from the sensors during these large
deformations would yield nearly unusable results. Hence, current soft sensing technology fails in
the case of GSCRs.

Thus, achieving proprioception and, subsequently, closed-loop shape change in GSCRs re-
quires robot-agnostic, onboard shape sensing capable of withstanding the strains necessary for
the drastic, high-DOF shape changes afforded by soft robots. This lack of sensing is the first and
primary reason that GSCRs have not advanced: The robot needs to reliably know its shape and
state, no matter how complex the deformation, and use this information to change shape and con-
trol a new gait on demand. However, to integrate this high deformation sensing into the surfaces
of these robots and effectively control the robot in any given shape, environment, or task, we need
to embed state-of-the-art electronics that can also withstand these strains. These electronics will
connect the sensors across the surface, perform local and global sensor processing, and execute
control policies—eventually executing onboard, untethered closed-loop control of shape, gait, and
task. To achieve this, in addition to robot-agnostic stretchable shape sensing, we also need robust,
highly stretchable computing platforms that can perform as well as today’s rigid electronics and be
embedded into the surfaces and bodies of shape-changing soft robots without inhibiting stretch.

These are the two major gaps between the soft shape-changing robots of today and GSCRs:
robot-agnostic stretchable shape sensing and embedded soft electronics for computation. This
review covers the state of the art in (#) embodied, robot-agnostic sensing approaches that can
accommodate strain and (§) highly stretchable circuits with state-of-the-art computing in soft
robots, and then summarizes major next steps for the field to achieve the GSCREs illustrated in
Figure 1.

2. ROBOT-AGNOSTIC SHAPE SENSING FOR GENERAL
SHAPE-CHANGING ROBOTS

Like robots, many sensing platforms use the term shape when they really capture a change in pose
or posture (e.g., of a continuum arm) by leveraging an initial mechanical model of the system.
These sensing techniques are invalid for GSCRs due to their dependence on a model of the robot
to reconstruct shape from their raw sensor data. As outlined above, because of the generalized
shape-changing ability of GSCRs, their sensing technology cannot depend on a model of the
hardware of the robot—they must be robot agnostic.

To date, only a small effort has been made to achieve stretchable, robot-agnostic shape sensing
for soft robots. In this section, we review (#) current proprioceptive techniques for soft robots that
depend on models of the robot hardware (learned or analytical) to reconstruct robot pose and
(#) the efforts toward robot-agnostic shape sensing across fields—the combination of which, we
believe, will ultimately become standard on shape-changing soft robots.

2.1. Traditional, Robot-Dependent Shape Sensing and Proprioception

Soft robots use a variety of sensing technologies to estimate their shape and state. A pervasive
form of soft sensing is stretchable strain sensing. This can be accomplished using either capacitive
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(37, 38, 44) or resistive (36, 45, 46) techniques, often withstanding large strains (>300%) (37).
Another common technique that measures bending, stretching, and even temperature is optical
sensing, including fiber optics (41, 47, 48), fiber Bragg gratings (49), and optoelectronic sensory
foams (50). It is also efficient to use actuators as the sensors, for example, using twisted and coiled
actuators (25) or shape memory alloy actuators (51). Many of these sensing techniques pair the
sensor data with machine learning to estimate the pose of their robot (39, 40, 47, 50).

The robot model-dependent techniques reviewed above exhibit excellent robustness to strain
and can be easily embedded in the bodies of today’s soft robots (52). However, they are limited to
capturing simple deformations due to challenges in modeling and sensor placement/complexity
in soft robotic systems (42, 43). To overcome this limitation and extend beyond sensing only what
can be modeled, we need robot-agnostic shape sensing that can withstand the same strains as
traditional soft sensors.

2.2. Stretchable, Robot-Agnostic Shape Sensing

Work on surface-based, robot-agnostic shape sensing has been ongoing for some time in the world
of computer graphics, for use during instances when occlusions make shape or object reconstruc-
tion difficult. For example, Hoshi & Shinoda (53) introduced a simple grid of inertial measurement
unit (IMU) arrays fixed together by rigid links that could bend around objects to detect shape by
reconstructing a grid (Figure 34). Work by Saguin-Sprynski and colleagues (58-61) has developed
shape reconstruction algorithms based on differential geometry, from flexible ribbons to sheets of
IMUs, yielding smooth reconstructions of shape. Hermanis et al. (54) also embedded IMUs into
fabric and approximated shape using a rigid link approximation (Figure 35). Similarly, Zhou et al.
(55) built custom flexible printed circuit board (PCB) arrays with nodes of IMUs dependent on
the application (Figure 3c¢), and Hu et al. (62) used arrays of IMUs to approximate the 2D cross
section of 3D objects. In addition to IMU arrays, piezoelectric sensors have been patterned into
flexible sheets, using machine learning to enable self-sensing (63). These sheets can then be applied
to various structures to approximate their shape.

The solutions described above allow the sensing platform to be placed on any robot to con-
tinuously estimate its shape, even as it changes. However, these solutions are only flexible and
cannot accommodate the stretch required for GSCRs. The need for stretchability, or at least for
a less physically constrained system, has been addressed without stretchable technology by using
patches and an external vision system to estimate shape (64), and even by using a small hand cart
that can roll along surfaces to collect orientations and distances along the surface (56) (Figure 34).
From systems utilizing external mechanisms, we have learned that with orientations on a surface
and the distances between them, any shape can be reconstructed, even under strain. The key is to
incorporate distance sensing into an onboard platform.

The first effort to combine soft robotic techniques with previous inextensible, robot-agnostic
shape-sensing methods involved using stretchable electronics. This approach embedded IMUs in
a stretchable sheet integrated with liquid metal-based strain sensors (57) (Figure 3e). Stretching
up to 30%, this ribbon of sensors estimated the 2D shape of static and dynamically stretching
objects. This work was then built upon by making a version more robust to consistent stretching,
using stretchable sensors and rigid PCBs, and 2D shapes were approximated under varying strains
of the system (up to 40%), showing only minor increases in mean absolute error (65).

Methods beyond combining stretch sensors and IMUs show promise as well, such as inte-
grating a self-sensing fiber Bragg grating (66) into an elastomer substrate, though this approach
suffers from lower stretchability (~<5%). Another group introduced an inductance sensor array
that could estimate surfaces but would be difficult to miniaturize and embed in a unified robotic

www.annualreviews.org o Stretchable Shape Sensing and Computation



Flexible shape sensing

External shape sensing

Stretchable shape sensing

Figure 3

Robot-agnostic shape sensing. (#) A flexible array of IMUs and microcomputers. Image reproduced with permission from Reference 53;
copyright 2008 SICE. (b) A flexible fabric sheet for shape reconstruction, showing the sheet hardware (z9p) and the reconstruction
(bottom). Images reproduced with permission from Reference 54. (c) A customized grid of IMUs for wearable shape sensing, showing
the real motions (top) and the reconstruction (bottorz). Images reproduced with permission from Reference 55. (d) Algorithm to use
distances and orientations along a surface to reconstruct shape using an external sensing system, showing the data collection scheme
(left) and the reconstruction process (right). Images reproduced with permission from Reference 56. (¢) A stretchable ribbon of
orientation and stretch sensors to reconstruct shape, showing the stretch (/eff) and the reconstruction (right). Panel adapted from
Reference 57 (CC BY 4.0). Abbreviation: IMU, inertial measurement unit.

system (67). We also note an interesting technique in which a rigid robot arm used an algorithm
to determine its topology by randomly actuating and gleaning which joints were neighbors from
crosstalk (68), a principle that could potentially be applied to soft actuator types in the future.

These robot-agnostic shape-sensing methods are summarized in Table 2. From this table, we
glean several key takeaways:

m Current robot-agnostic shape-sensing methods are largely surface based, requiring sensors
and electronics along the surface of the shape or body.

m Early robot-agnostic shape-sensing techniques do not allow stretch or surface strains.

m Common techniques use orientation sensors spaced along the surface with known or
measured distances between them to reconstruct shape.

m Many robot-agnostic shape-sensing methods are incompatible with high-strain, soft robotic
systems.
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Table 2 Robot-agnostic shape-sensing techniques
Shape reconstruction | Shape Sensor Max.
Reference Approach? technique® dim.¢ locationd stretch.® | Resolutionf
Hoshi & Shinoda (53) | Flexible array of IMUs | Rigid link 3D Surface NA 5.5 cm
Sprynski et al. (58) Flexible PCB ribbon of | Differential geometry 3D Surface NA 3cm
IMUs

Huard et al. (59) Flexible PCB ribbon of | Differential geometry 3D Surface NA 3 cm
IMUs8

Huard et al. (60) Flexible PCB ribbon of | Differential geometry | 3D Surface NA 3cm
IMUs

Saguin-Sprynski et al. | Array of IMUs on textile | Differential geometry 3D Surface NA 12.5 cm

(61)
Mittendorfer et al. (64) | Camera and markers Marker position 3D Offboard NA ~2.4 cm
reconstruction

Rendl et al. (63) Piezoelectric sensors on | Self-sensing using 3D Surface NA NA
flexible film machine learning

Hermanis et al. (54) Array of IMUs on textile | Rigid link 3D Surface NA 3.5 cm

Stanko et al. (56) Wheeled cart with IMU | Differential geometry 3D Offboard NA NA
and encoders

Zhou et al. (55) Flexible array of IMUs | Radial basis function 3D Surface NA Variable

interpolation

Hu et al. (62) Ribbon of IMUs Differential geometry | 2D Surface NA 20 cm

Lun et al. (66) Fiber Bragg gratingin | Self-sensing using 3D Surface <5%h NA
silicone machine learning

Shah et al. (57) Stretchable electronic Rigid link and 2D Surface 30% 1.7 cm
circuit with IMUs and | differential geometry
stretch sensors

Woodman et al. (65) | Ribbon of IMUs and Differential geometry | 2D Surface 40% 7 cm
textile stretch sensors

Soleimani et al. (67) Mutual inductance Self-sensing using 2D Surface ~50%! NA

se€nsor array

inversion, calibration,
and machine learning

Abbreviations: IMU, inertial measurement unit; NA, not applicable; PCB, printed circuit board.

*Implemented sensing hardware or principle.

YHow the sensor data were processed to reconstruct the shape; some techniques connect nodes along the surface using rigid links, while others use methods

in differential geometry to achieve smooth results.

“Reconstructed shape dimension, specifying whether 2D or 3D shapes were reconstructed.

4Where the sensing hardware was positioned relative to the robot.

¢Maximum stretchability (maximum percent strain) reported.

fResolution or distance between nodes in a sensing array; for stretchable systems, this distance is measured at rest.

€The ribbon is placed in multiple positions on a 3D surface.
hThe elastomer stretches minimally with the embedded sheet, although it is not quantified in this work.

iFor 1D shape sensing.

m The average resolution of sheet- or ribbon-based sensing techniques is 6.16 cm, with the

minimum being 1.7 cm (57).

It is clear that we have yet to truly achieve integrated, robot-agnostic, 3D shape sensing capable
of withstanding the strains of future GSCRs, though a few works that utilize IMUs and stretch
sensors together are getting close.
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The next work in this space should focus on (#) increasing the stretchability of current meth-
ods (e.g., by removing rigid structures that would inhibit shape morphing), (§) increasing the
level of integration of shape-sensing materials and hardware into the surfaces of soft robots, and
(¢) increasing the resolution of sensing arrays to capture more detailed shapes. One notable work
indeed tackled stretchability, integration, and resolution (57) by using techniques in stretchable
electronics to create a much softer, tightly integrated sensing array. In this design, the only rigid
components were the integrated circuits (ICs).

As indicated experimentally (65) and theoretically (69), at least two orientations per curve on
the surface are required to reconstruct a shape accurately. For detailed and small-scale shapes, the
sensor hardware must necessarily also be smaller and more tightly spaced to recreate the shape. For
stretchable IMU arrays, this means minimizing IMU node size and spacing and making the rigid
components as small as possible to allow stretch. In addition, while we expect actuator expansion
to execute shape changes, there will also be necessary shrinkage of actuators. Therefore, sensing
platforms should both accommodate and capture shrinkage.

To propel the field of robot-agnostic stretchable shape sensing forward, we will need circuitry
capable of connecting these sensors across the surfaces of soft robots, processing sensor data, and
executing control policies and commands, all without inhibiting the high-strain shape change of
GSCRs. Thus, advancements in stretchable electronics that can be embedded into the bodies of
high-strain soft robots and exhibit state-of-the-art computational power are essential to enabling
GSCRs.

3. STRETCHABLE COMPUTATION FOR GENERAL
SHAPE-CHANGING ROBOTS

Highly stretchable electronics with state-of-the-art computational power and component density
have remained an open challenge in soft robotics. However, overcoming this challenge will be
pivotal for the advancement of GSCRs. Without solutions, soft roboticists have moved electronics
and actuators offboard (70) or compromised with rigid sections of their soft robots (71). However,
there have been efforts toward stretchable computation suitable for embedding into soft robots.
"Two main categories of stretchable computation exist: those comprising entirely soft logic—for
example, using pneumatics (72-75), microfluidics (76, 77), or other material properties (78)—and
those converting rigid PCBs into soft and stretchable versions while maintaining rigid ICs and
passive components (79, 80). This review focuses on the latter category, as it maintains state-of-
the-art computational ability relative to soft logic gates.

Many strategies have been put forward to create PCBs with stretchable substrates and con-
ductors (81), such as liquid metal-based traces (82), copper traces that have been geometrically
patterned to allow stretch (79, 83, 84), and conductive composites (85). Circuits with liquid metal-
based traces generally exhibit high conductivity and are theoretically limited in stretchability
only by the material encasing them. These factors make liquid metal-based conductors excellent
candidates for the high-strain circuits required for GSCRs.

The most prevalent liquid metal used for stretchable electronics is a eutectic gallium-indium
alloy. This material has been modified in many ways to be used for stretchable electronics (86, 87),
including formulation modifications affecting the rheological properties (88), electromechanical
behavior (89-92), and conductivity (93). However, we have yet to see liquid metal-based complex
circuits integrated into high-strain robotic systems.

While many authors showcase circuits as a demonstration of their process or material, these cir-
cuits are often applied to systems in locations experiencing low or no strain (94-96). For example,
a stretchable circuit placed adjacent to, but not directly over, a joint in a wearable demonstration
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will experience relatively low strains compared with the strains expected in GSCRs. Addition-
ally, the strain-dependent performance of so-called stretchable circuits is often not characterized
(97-99), with a few counterexamples (82, 89, 100-103) (Figure 44). We posit that such strate-
gic placement and/or lacking characterizations are largely due to challenges in interfacing rigid
microelectronic components with soft traces, soft traces with substrates and encapsulants, and
combinations thereof. Stress concentrations between rigid and soft materials lead to breakage, or
bridging of conductive traces. Imperfect bonding between encapsulating and substrate materials,
or between substrate materials and IC packaging, can also lead to failure modes. In sum, stretch-
able circuits face challenges at material interfaces, which likely compels designers to reduce the
complexity of their circuits, the amount of strain applied to them, or both.

In this section, our aim is to review the literature on stretchable computation, focusing on the
quality of the most complex circuits presented in each paper. We seek to describe how this field
must evolve to meet the demands of GSCRs and realize integrated stretchable computation in
soft robots. We begin with Table 3, which compiles recent works on stretchable computing that
are within the bounds of our aforementioned focus. This table also introduces the concept of a
complexity number—the number of rigid-soft interconnects divided by the number of microelec-
tronic components. If a paper had multiple circuits, the one with the highest complexity number
was chosen and evaluated in the table. Figure 5 plots the amount the circuit stretched against the
complexity number for each paper.

From Table 3, we glean several key takeaways:

m Many researchers have successfully integrated ICs into circuits with resolutions on the order
of 200 um using various manufacturing techniques and substrates.

®m The maximum strain of the most complex circuit (in a given work) is not often re-
ported. Complex circuits are often treated as demonstrations, lacking comprehensive
characterization.

m Most demonstrations of complex circuits are in low-strain/no-strain applications.

m Of the 21 works included in Table 3, nine have a complexity number of at least 3 (82, 94,
97,98, 100-102, 109, 110).

m The highest strain withstood by a complex circuit was 404% (102).

m Four works in Table 3 embedded their circuits in soft robots (97, 101, 102, 109).

Figure 5 also provides several key findings:

m Complexity numbers greater than 2 indicate that there was at least one component in the
circuit that was not a simple resistor, LED, capacitor, diode, etc.

m More complex circuits with complexity numbers of at least 3 are rarely strained more than
a few percent during bending and are rarely characterized.

m While a couple of circuits were strained to between 300% and 400% in isolation (101, 102),
when integrated into soft robots, they experienced strains of approximately 100% (102).

To illustrate the utility and usage of the complexity number, we explicitly mention a few special
cases and examples. Several of the referenced works use only passive microelectronic components,
like LEDs (91,103, 105), so although they have a large number of components and interfaces, their
complexity number is 2. Works with higher complexity numbers have at least one IC component
with multiple connections, indicating more state-of-the-art design and computational capability.
One example of note is the paper by Huang et al. (84), who used geometric patterning of copper
traces to create a four-layer circuit, but since there were no rigid-soft interfaces, it has a complexity
number of 0.
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Figure 4 (Figure appears on preceding page)

Stretchable and embedded electronics for onboard computing. (#) Twwo PDMS-based stretchable electronic circuits being strained to
failure using a mechanical testing device [an accelerometer (top) or an IMU and temperature circuit (bottorz)]. Panel adapted with
permission from Reference 100. () Wearable demonstrations of stretchable circuits with integrated computation and sensing. Images
reproduced with permission from Reference 104. (c) A stretchable circuit embedded in a soft robotic gripper. The circuit is shown (zop
left), along with the gripper (top 7ight) and the integration of the two (bottomz). Panel adapted with permission from Reference 97.

(d) A stretchable circuit with computational processing, Bluetooth, and sensing integrated into an octopus tentacle, showing the circuit
before integration (top) and integrated into the gripper (bottonz). Panel adapted from Reference 101 with permission from AAAS.

(e) A stretchable Arduino Pro Mini being tested using a mechanical testing device at low and high strains (/eff) and embedded into the
stretching portion of a soft robot (right). Panel adapted with permission from Reference 102. Abbreviations: EL, elongation; EP,
expansion; FFC, flat flexible cable; IMU, inertial measurement unit; PDMS, polydimethylsiloxane; SMA, shape memory alloy; ToF,
time-of-flight range chip.

In conjunction with the complexity number, the number of layers in a circuit is important for
achieving high computational capacity in a small space. Most commercial PCBs today are two
or more circuit layers, which helps minimize board size and cost. Notably, nine of the 21 papers
tabulated are only one layer (82, 94-97, 100, 108-110), while nine are two layers (89, 91, 98, 101-
104, 106, 107), and two are more than two layers (84, 105). Hence, a significant number of works
meet the standard two-layer designs of rigid PCBs today, but there is still work to do to develop
the manufacturing procedures to adapt to double- and multilayer circuits.

While many of these works demonstrate complex circuits, few provide a full characterization
of the entire circuit; instead, they typically characterize only a single trace under strain. Even
fewer characterize multiple samples of their circuits under strain. This presumably stems from
challenges in interfacing between rigid and soft components, since some traces strain up to 900%
alone (94), while the complete complex circuits are not strained. A notable and consistent com-
monality among many papers is that the complex circuit is utilized as a wearable in demonstration.
Though these demonstration circuits show utility, even making complex temperature/humidity
(94), electrocardiogram (110), and optical/thermal (104) sensor circuits (Figure 4b), they often
do not show or characterize strain, though some show bending (96) or a few percent strain in
supplemental videos (95). Ultimately, there are only a few examples of circuits embedded into soft
robot bodies (Figure 4c,d), and just one showing functionality during high-strain use of the soft
robot (102) (Figure 4e).

The lack of characterization and high-strain demonstrations potentially points to a central
challenge in the field of stretchable computing that needs to be traversed in order to enable soft
computation for high-deformation, soft GSCRs with state-of-the-art-compute: interfacing. Inter-
faces between ICs and soft conductors, soft conductors and substrates, substrates and encapsulants,
ICs and substrates, and ICs and encapsulants are often failure points in stretchable circuits. So-
lutions to challenges in interfacing could be addressed at the material level, by introducing strain
gradients into the substrate to mitigate stress concentrations around rigid components, for exam-
ple, by adding stiffer materials around stiff components (101, 102). Stiff materials could also be
integrated directly into the substrate (i.e., through substrates designed with stiffer portions under
rigid components) to mitigate stress concentrations more effectively. The same concept could be
applied to the soft conductor: It bonds well with and is rigid at the point where it contacts the
rigid component but softens into a liquid as it grows farther from the substrate, allowing stretch.
Additionally, solutions in adhesion and bonding between substrates could mitigate these issues.
If bonding were perfect between the packaging of an IC component and the soft substrate, then
trace bridging between pins would be much less likely. In a similar vein, perfect bonding between
the substrate and encapsulant would prevent soft trace materials from bridging to other traces.

In addressing the above challenges, the field will naturally migrate from work on stretchable
conductors with circuits as demonstrations to full characterization of stretchable computation
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Figure 5

Plot of the maximum strain of the most complex circuit presented in several papers on stretchable
electronics versus the complexity number (the number of rigid—soft interfaces divided by the number of rigid
components in the circuit). If the circuit’s performance during strain was not quantified or shown, we plotted
it as zero. The number of rigid—soft interfaces was calculated by adding the number of times a rigid
component (resistor, LED, integrated circuit, etc.) contacted a soft conductive trace; for example, a circuit
with a single LED would have 2 interfaces, and a circuit with a 32-pin integrated circuit component with

10 traces connecting to 10 pads would have 10 interfaces (not 32). The number of microelectronic
components is counted as the total number of integrated circuits, resistors, capacitors, diodes, and so on in
the circuit; for example, a circuit with three resistors, one LED, and a microprocessor integrated circuit
would have a total of five components. Note that because these numbers and the information from the rest
of the table were derived only from the material available in the papers and supporting information, the
information may be imperfect. However, if the numbers are not entirely correct, they are close, and they are
reported here in an effort to summarize the trajectory of the field. Reference 101 is marked half pink and half
blue because the circuit that was characterized (and plotted here) is not the one embedded in the robot.

platforms and their performance when embedded in soft, high-strain systems. This progression
will lead to soft computation platforms that match the modulus of the application or robot, seam-
lessly integrate sensing, and move control onboard. These advancements, coupled with progress
in stretchable, robot-agnostic shape sensing, will enable closed-loop control over shape in GSCRs,
facilitating onboard control and moving us closer to realizing the vision of the field and the
robotics community as a whole.

4. TOWARD CLOSED-LOOP SHAPE CONTROL

Having reviewed the current status of robot-agnostic shape sensing and stretchable computation,
we now ask, How do these technologies synergize to achieve closed-loop shape control for future
GSCRs?

Beginning with the sensing arrays (including stretch sensors and ICs for orientation sensing)
summarized in Table 2 and extending beyond the necessary improvements already discussed (to
stretchability, level of integration into a shape-changing robot, and resolution), we note that the
data from these sensors must be compiled and processed both locally and centrally to fulfill the
objective of estimating a robot’s shape. Onboard central computers should then be able to receive
a desired shape and adjust the actuators accordingly to achieve this shape using the processed
onboard shape-sensing data. Achieving the above functionality while retaining stretchability for
morphing requires stretchable computation, as summarized in Table 3.

The techniques for implementing both robot-agnostic shape sensing and computation over-
lap. In Table 2, the solution with the highest level of compliance matching to a soft robotic
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system, as well as the highest resolution of shape sensing, is achieved using techniques derived
from the field of stretchable electronics. Combining the tools and methods from stretchable com-
putation and robot-agnostic shape sensing propels us toward closed-loop shape control in soft
robots.

Nevertheless, the algorithms needed to exploit this progress in materials and hardware must
also be developed. The challenge of closing the loop on shape for shape-changing robots has not
yet been thoroughly investigated. A few key initial methods have been put forth to accomplish in-
verse control of shape, which could be adapted in the future to robotic systems with onboard shape
sensing. Wang et al. (111) used a deep learning algorithm, SMNet, to successfully demonstrate in-
verse control of 3D shape-morphing devices using point cloud data generated from simulations or
oftboard 3D scanners. In addition to using machine learning, which can be time and data intensive,
methods in shape servoing could be relevant for closing the loop on shape. Shetab-Bushehri et al.
(112) proposed lattice-based shape tracking and servoing of elastic objects that could successfully
morph between known shapes. Such approaches could be adapted to realize closed-loop shape
control in GSCRs using the materials and hardware reviewed herein.

5. CONCLUDING REMARKS

GSCRs hold the potential to realize the broad vision of robotics: machines capable of per-
forming any task. Unrestricted by their morphology, GSCRs will leverage both biological and
fantastical designs to efficiently accomplish various tasks. With advancements in robot-agnostic
stretchable shape sensing and soft, stretchable computation, the initial examples of GSCRs with
proprioception and closed-loop shape control are beginning to emerge.

In addition to sensing and computation, advancements in actuation (113), variable stiffness
(114-116), structural materials (117), and control mechanisms (118, 119) are essential to fully
realize GSCRs. Soft actuators should enable significant deformations, similar to pneumatic and
hydraulic actuators, while allowing for untethered, independent motion, akin to electrically ac-
tuated devices such as dielectric elastomer (120) and piezoelectric actuators (121). GSCRs must
also be capable of performing useful work. For instance, variable-stiffness limbs, like those in-
troduced by Baines et al. (26), which soften to morph and stiffen to hold shape, highlight the
necessity of such materials for effective shape morphing in GSCRs. Additionally, incorporating
variable-stiffness materials, such as pressure-responsive, thermally responsive, and other types of
materials, can enhance GSCR performance by using stiffness as a functional parameter.

Once the hardware for generic shape change is developed, several key questions arise. When
and how should a robot decide to change shape? When is it energetically favorable? What are the
most efficient methods for shape change? Overall, when is changing shape worth it? These are
just the beginning of the intriguing and crucial questions we can explore with a platform capable
of generalized shape change.

This review aimed to outline the state-of-the-art techniques for robot-agnostic shape sensing
and stretchable computation. We hope it serves as a valuable resource for the development of
GSCRs that can efficiently adapt their morphology and behavioral control policies to meet diverse
tasks and environmental challenges.

1. A significant gap exists between today’s shape-changing robots and the envisioned
general shape-changing robots (GSCRs).
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. Robot-agnostic stretchable shape sensing and stretchable computation are crucial

components that will enable closed-loop control for future GSCRs.

. Advancements in stretchable electronics and interfacial science are likely to mature

current examples of soft, stretchable shape sensing and onboard computation.

. Addressing the key challenges we outlined in this work will be pivotal for achieving

closed-loop shape control in soft robots, marking a significant step forward for the field.

. Improving the stretchability and resolution of shape-sensing arrays is necessary to

capture dynamic and complex shapes.

. Advancements in interfacing between soft and rigid materials (e.g., soft traces and

rigid integrated circuits) are essential for the successful implementation of stretchable
electronics in general shape-changing robots.
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